Brief Notes on the Decay of Vortices in a Second Grade Fluid

نویسنده

  • K. R. RAJAGOPAL
چکیده

G. I. Taylor [ 1 ] showed that the flow representing a double array of vortices which has the same periodicity in both the x and y directions is a solution to the equations of motion in two dimensions of a linearly viscous fluid. It was shown in [2] that such a result is also true for 'second order' fluids if time scale which characterizes the memory of the fluid and the size of the vortices satisfy certain apriori restrictions. In this note we show that the results established by Taylor [1] for the linearly viscous fluid are uncondi t ional ly true, irrespective of the time scale which characterizes the fluid or the size of the vortices in the case of incompressible second grade fluids provided they are thermodynamically compatible. Also, in this analysis we investigate the relationship between the rate of decay of the vortices, and the periodicity of the vortices. It is found that if the periodicity is increased in the x or y directions, the vortices decay faster. It is also found, as is to be expected, that the vortices decay faster as the coefficient of viscosity # increases, while the decay is slower if the normal stress moduli oq is larger. The Cauchy stress T in an incompressible second grade fluid is assumed to be related to the fluid motion in the following manner [3 ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model

A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...

متن کامل

Finite Integral Transform Based Solution of Second Grade Fluid Flow between Two Parallel Plates

The importance of the slip flow over the no-slip condition is widely accepted in microscopic scaled domains with the direct impact on microfluidic and nanofluidic systems. The popular Navier Stoke’s (N-S) flow model is largely utilized with the slip flow phenomenon. In the present study, the finite integral transform scheme along with the shift of variables is implemented to solve the equation ...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Unsteady Magneto Hydro Dynamic Flow of a Second Order Fluid over an Oscillating Sheet with a Second Order Slip Flow Model

Unsteady slip-flow of second grade non-Newtonian electrically conducting fluid over an oscillating sheet has been considered and solved numerically. A second-order slip velocity model is used to predict the flow characteristic past the wall. With the assumption of infinite length in x-direction, velocity of the fluid can be assumed as a function of y and t, hence, with proper variable change pa...

متن کامل

Analytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet

In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005